

Name: PROC (Procedure)

Function: To CREATE, EDIT or DELETE a PROC Condition.

Response: A dialogue box will appear in which any of the following options may be selected:

CREATE : To create a Procedure Condition ready for editing.

EDIT : To edit a predefined (created) Procedure Condition. A list of existing
Procedure Conditions will be displayed. Select the condition you wish to edit
in the usual manner.

DELETE : To delete an existing Procedure Condition. A list of conditions
will be displayed. Select a condition in the usual manner and the selected
condition will be deleted from memory.

Name: MESSAGE

Function: To CREATE, EDIT or DELETE a MESSAGE.

Response: A dialogue box will appear in which any of the following options may be selected:

CREATE : To create a message field ready for editing or entering a message.

EDIT : To enter or edit a message whose field had previously been defined. A
list of existing messages will be displayed. Select the message you wish to
edit. The message may be edited using the cursor keys and the Delete key
(CAPS SHIFT + 0 Spectrum 48K). Typing in between characters will insert
text into the message. Press RETURN (ENTER) to finish editing.

DELETE : To delete an existing message. A list of messages will be
displayed. Select a message in the usual manner and the selected message will
be deleted from memory.

Note 1: To see a message use FCL PRINT NN XX YY. You will need to precede the
PRINT command with a TEXTCOL instruction. This will tell the TEXT printer
what colour to display the message.

Note 2: MESSAGES and INSTRUMENTS will only display in the TEST screen.

THE SHORTCUT ICONS
The following details the shortcut icons for the Environment Editor and the 128K Editor.
Descriptions of the shortcut icons for the condition editor duplicate functions from the menus.
Refer to the relevant menu headings for details.

Name: GLOBAL
Function: To bring up a list of the Global Objects already defined within the system.

Response: A list of predefined objects in the GLOBAL area will be displayed, each followed
by a + or - symbol. The + symbol denotes that the object is included within the
current area and - denotes it is not included.

Action: Position the cursor over the desired object and press the fire button (or 0 key) to
either select + or -. The fire button (or 0 key) will toggle between the + or -
symbols.

Response: Any Global Objects selected with a + symbol will appear within the current area.

Name: COPY

Function: Create a duplicate of a specified object.
Response: A list of objects will be displayed.

Action: Select the object from the item selector.
Response: The new object will be created in the View window.

Name: CREATE

Function: Create a new object in the current area.

Response: A panel (see figure 4) will be displayed over the Shortcut icons showing the type of
object available.

Action: Select an object type.
Response: The new object will be created within the View window

Name: EDIT

Function: Edit a specified object.

Response: A list of existing objects within the current area will be displayed.
Action: Select an object in the usual manner.

Response: A new bank of icons (see figure 5) will be displayed over the Shortcut icons. The
icons are split into five groups:

POINT : Alters the position of the point referred to in the Info Bar. This
function only applied to non-rectangular facets and pyramids. In the case of
facets all points may be moved.
Note: Stretching and shrinking will also move the points in the object.

TURN : Rotates the object in the direction of the arrows on the icons through
90 degrees.

IFFALL Class: Conditional Instruction (Interrogator)
Format: IFFALL

THEN
<commands...>
[ELSE
<commands...]>
ENDIF

Function:
This Interrogator returns true if the player has fallen past the safe fall height, specified as FALL
ABILITY in the SETUP menu. The result of the check can then be dealt with by a
THEN/[ELSE]/ENDIF construct.

IFGT Class: Conditional Instruction
Format: IFGT

THEN
<commands...>
[ELSE<commands...]>
ENDIF

Function:
This command returns a true result if the preceding command had: (i) set the carry flag and (ii)
unset the zero flag. This instruction will normally follow a CMPV, ADDV, ADCV, SUBV or
SBCV instruction and act on the result of it. A THEN/[ELSE]/ENDIF construct should follow
this inst ruction.
Note: IF's cannot be nested!

IFHIT Class: Conditional Instruction (Interrogator)
Format: IFHIT P1

THEN
<commands...>
 [ELSE
<commands...]>
ENDIF

Function:
This command checks if an object P1 has been collided with (or walked on). A true or false is
returned.
Example: IFHIT 4

THEN
INVIS 4
VIS 5
ENDIF

In this condition the system checks if object 4 has been collided with. If it has then object 4
becomes invisible and object 5 becomes visible. This could be used to remove a door (object 4)
and replace it with an open doorway (object 5).
Note: IF's cannot be nested!
See also: IFACTIVE, IFSHOT

IFLT Class: Conditional Instruction
Format: IFLT

THEN
<commands...>
 [ELSE
< commands...]>
ENDIF

Function:
This command returns a true result if the preceding command had: (i) unset the carry flag and (ii)
unset the zero flag. This instruction will normally follow a CMPV, ADDV, ADCV, SUBV or
SBCV instruction and act on the result of it. A THEN/[ELSE]/ENDIF construct should follow
this instruction.

Note: IF's cannot be nested!

IFSENSED Class: Conditional Instruction (Interrogator)
Format: IFSENSED

THEN
<commands...>
[ELSE
<commands...]>
ENDIF

Function:
This Interrogator returns true if the player is occupying space that is detectable by a sensor. The
result of the interrogator is then acted upon bu a THEN/[ELSE]/ENDIF construct placed after it.
The effectiveness of a sensor can be set by altering it's ATTRIBUTES.

IFSHOT Class: Conditional Instruction (Interrogator)
Format: IFSHOT P1 (P1 is an object)

THEN
<commands...>
 [ELSE
<commands...]
ENDIF

Function:
Checks if you have just shot object P1, returning a true or false.

IFTIMER Class: Conditional Instruction (Interrogator)
Format: IFTIMER

THEN
<commands...>
[ELSE
<commands...]>
ENDIF

PRINT Class: Miscellaneous Instruction
Format: PRINT P1 xx yy
Function:
This command will print the specified message number P1 from the message list at the X (xx)
and Y (yy) co-ordinates specified. These co-ordinates are in characters.
Note: You must use a TEXTCOL command to set the colour.

REDRAW Class: Miscellaneous Instruction
Format: REDRAW
Function:
This command will force an immediate redraw of the Freescape view window. Any objects
whose status have changed since the last frame will be displayed in their new state.

SETV Class: Variable Manipulation
Format: SETV P1 V2
Function:
Sets the variable V2 to the value P1.

SOUND Class: Miscellaneous Instruction
Format: SOUND P1
Function:
This command will immediately perform the sound number P1. The parameter P1 must be in the
range 0-12, the sounds corresponding to the value of the parameter are listed in the Appendix.

SBCV Class: Variable Manipulation
Format: SBCV P1 V2
Function:
This subtracts the absolute value P1 from the variable V2. If the carry flag was set before the
execution of this instruction, then the result is decremented further by 1.
See also : ADDV, ADCV, SUBV

SUBV Class: Variable Manipulation
Format: SUBV P1 V2
Function:
This subtracts the absolute value P1 from the variable V2.
See also : ADDV, ADCV, SBCV

SYNCSND Class: Miscellaneous Instruction
Format: SYNCSND P1
Function:
This command will execute the specified sound P1 in sync with the next complete frame update.
The parameter P1 must be in the range 0-12, the sounds corresponding to the value of the
parameter are listed in the Appendix.

TEXTCOL Class: Miscellaneous Instruction
Format: TEXTCOL P1
Function:
This command is used to set the text and background colour for printing messages. P1 is
calculated thus:
 Spectrum
 P1 = (ink) + (paper x 8) + (64 if Bright required) + (128 if Flash required)
 Amstrad CPC
 P1 = (ink) + (paper x 4)
 Commodore 64
 P1 = (ink) + (paper x 16)

THEN Class: Conditional Statement
Format: IF -xx-

THEN
<commands...>
 [ELSE
<commands...]>
ENDIF

Function:
This command checks the status of the zero flag in the CCR. If the contents are true then the
commands following the THEN statement are executed until either an ELSE or ENDIF statement
is found. If an ELSE is found the commands following it are ignored up until an ENDIF or the
end of the command list. If an ENDIF is found then normal command execution will continue
with the following command. The THEN command is the only command which examines the
result of a condition, so an IF -xx-, ELSE, ENDIF combination without a THEN command will
produce incorrect results.

TIMER Class: Miscellaneous Instruction
Format: TIMER P1
Function:
The TIMER instruction sets the frequency at which the timer flag is set, for detection by an
IFTIMER instruction. P1 is the interval time, and is in 50ths of a second.

TOGVIS Class: Object Manipulation
Format: TOGVIS P1 [P2] (object [area])
Function:
This command will make an invisible object visible or a visible object invisible. If no area is
specified the object is presumed to be in the current area.

VIS Class: Object Manipulation
Format: VIS P1 [P2] (object [area])
Function: This command makes an object visible.
See also : INVIS, IFVIS, TOGVIS

XORV Class: Variable Manipulation
Format: XORV P1 V2
Function:
This command performs the logical EXCLUSIVE OR (EOR/XOR) on the two values specified.
The value P1 is XORed with the variable V2 and the result is stored in variable V2. Flags are set
accordingly. This instruction requires some understanding of Binary and Logical functions.
Example 1: IFACTIVE 12

 (object)
THEN
XORV 8 21
ENDIF

This uses bit 3 (the fourth bit) of variable V2 as a flag to say that object 12 has been activated or
deactivated. This allows us to toggle a flag using only one bit. Possible uses include keeping track
of switches which toggle between on and off. Using this method it is possible to use a variable to
store up to eight on/off flags. The flags can be checked using the ANDV command, e.g.
Example 2: ANDV 8 21

IFEQ
THEN
<commands...>
 [ELSE
<commands...]>
ENDIF

EXAMPLES

To Go to another Area
As an example we will use object 3 which is our DOOR and object 4 which is our DOORWAY.
For simplicity the doorway is a black RECTANGLE which is placed close against a wall and the
door is a red CUBE which has been "flattened' by the use of the EDIT tools and placed close up
in front of the doorway. The DOORWAY (rectangle) should be set to INVISIBLE via the
ATTRIBUTES function both on START STATUS and PRESENT STATUS. We will use the
IFACTIVE command to "open" the door and reveal the doorway as follows. Enter the following
condition as a LOCAL condition (create one if required first):

IFACTIVE 3
THEN
INVIS 3
VIS 4
ENDIF

Now experiment by pressing the SPACE BAR and position the cursor on the door and press the
"A" key. The door (object 3) should vanish and be replaced by the doorway (object 4).

Create a new AREA via the ADD AREA option and return to the Area 1 via the GOTO AREA
option. Now add the following condition commands in the same way as above and enter the
following: (they can be tapped onto the end of the previous set of intructions, or placed in a
newly created local condition list in the same area.

IFHIT 3
THEN
GOTO 1 2
ENDIF

Now try walking towards the "doorway" until you collide with it. You will be transported
instantly to ENTRANCE 1 in AREA 2.

To Make an Object Visible or Invisible
As can be seen by the previous example, making objects vanish and reappear is a very simple
matter. If, for example, we wish an object (say object 3) to become invisible when it is shot we
would enter the following condition as a LOCAL condition (create one if required).

IFSHOT 3
THEN
INVIS 3
ENDIF

Shoot object 3 and see the effect.

To Make a Sound
This example will make a ping when picking up an object (object 5).

IFACTIVE 5
THEN
INVIS 5
SYNCSND 1
ENDIF

